Name		_ Boundary
Per	_ Date	

The vast majority of earthquakes occur at plate boundaries. The deepest earthquakes occur at subduction boundaries where lithosphere is plunging down into the mantle. Deep focus earthquakes are defined as those with foci (plural of focus) occurring deeper than 300 kilometers. Shallow earthquakes have foci less than 70 kilometers deep, while intermediate focus earthquakes occur at depths between 70 and 300 kilometers.

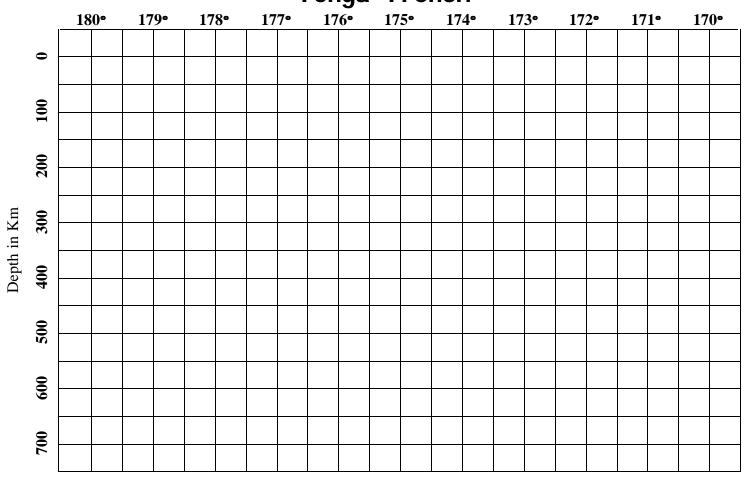
The behavior of the subducting plate is determined by the age of the

rocks comprising the plate. Older crust is cooler, and therefore denser, than younger crust. Older, cooler, denser crust subducts faster and at a steeper angle than younger, warmer, less dense crust.

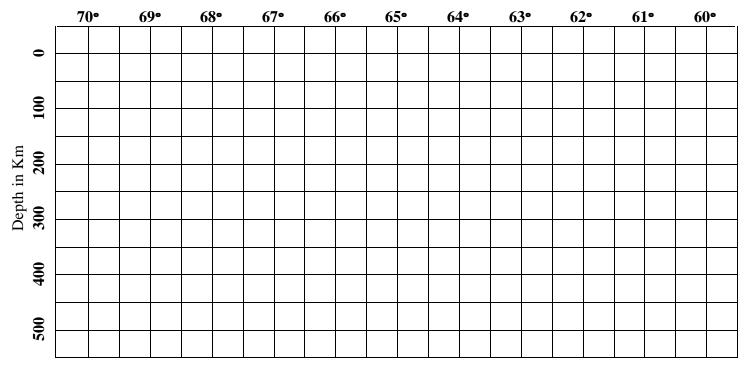
lab

In this lab activity, you will plot and compare actual earthquake foci data from two areas where subduction is currently occurring. One of the areas includes the Tonga I slands in the southwest Pacific Ocean. The other area is along the coastline of Chile.

Procedure:

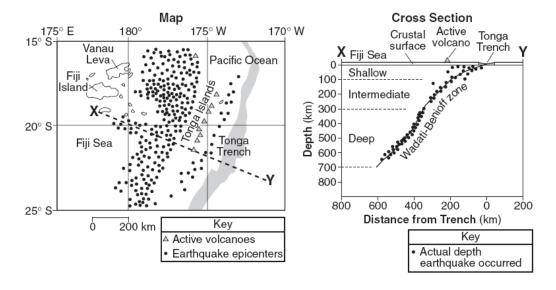

- 1. Look at Earthquake Depth Data Table (On next page). Determine the number of shallow (<70), intermediate (70-300) and deep (>300) earthquakes and record them all on the summary table, for both the Tonga and Chile Trench.
- 2. Add the numbers in both columns of Summary Table. The total should equal the Total number of Quakes.

Summary Table					
Earthquake Type	Focus Depth	Tonga	Chile		
Shallow	Less than 70 km				
Intermediate	70 km – 300 km				
Deep	More than 300 km				
Total number of Earthquakes					

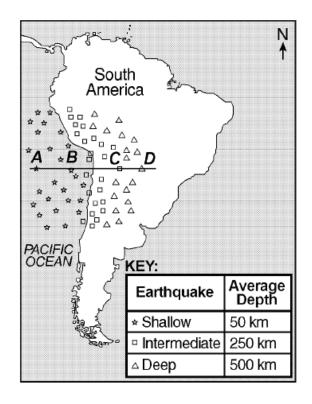

- 3. On the graph below plot the data for Tonga trench from the table. DO NOT CONNECT THE DOTS. Instead draw a Best –fit line for the points. A Best-fit line is a line that does not go through the points but shows a trend of data.
 - Assume the line is the upper surface of a subducting plate.
 - ✓ Label the approximate location of the Tonga trench on the graph
 - Using your Reference tables, indicate the name of the two converging plate
 - ✓ Using your Reference tables, indicate the relative movement of each plate using arrows
 - Using your Reference tables, indicate the type of crust that makes up each plate.
- 4. Make a 2nd graph for the Chile trench. Plot the Chile data... and again draw your best-fit line.
 - ✓ Assume the line is the upper surface of a subducting plate.
 - ✓ Label the approximate location of the Chile trench on the graph
 - Using your Reference tables, indicate the name of the two converging plate
 - ✓ Using your Reference tables, indicate the relative movement of each plate using arrows
 - Using your Reference tables, indicate the type of crust that makes up each plate.

Earthquake Depth Data				
Tonga	trench	Chile ⁻	Trench	
Longitude	Focus	Longitude	Focus	
(°W)	depth	(°W)	depth	
	(km)		(km)	
176.2	270	67.5	180	
173.8	35	66.9	175	
175.8	115	68.3	130	
174.9	40	69.3	60	
175.7 175.9	260 190	62.3 70.8	480 35	
175.9	250	61.7	540	
173.4	35	68.4	120	
176.0	160	69.8	30	
175.7	205	66.5	220	
173.9	60	69.8	55	
177.7	580	67.3	185	
174.9	50	67.7	120	
178.5	505	69.5	75	
177.9	565 650	68.3	110	
179.2 178.7	650 600	67.9 69.1	140 95	
173.8	50	69.2	35	
178.3	540	63.8	345	
177.0	350	68.6	125	
174.6	40	66.7	210	
178.8	580	68.1	145	
176.8	340	66.7	200	
177.4	420	65.2	285	
173.8	60 520	67.5 69.7	170	
178.0 177.7	520 560	68.2	50 160	
174.1	30	67.1	230	
177.7	465	66.2	230	
179.2	670	66.3	215	
178.8	590	68.6	180	
178.1	510	66.4	235	
175.1	40	68.5	140	
178.2	550	65.5	290	
176.0	220	68.1	130	
178.6 174.8	615 35			
174.6	595			
170.2	675			
177.8	460			
177.0	380			

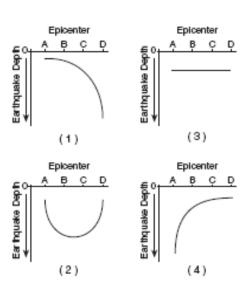
Tonga Trench


Chile trench

Discussion Questions Questions 1-5 use the diagram below

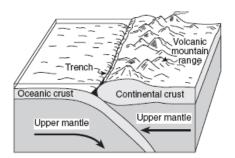

The map represents a portion of Earth's surface in the Pacific Ocean. The positions of islands, earthquake epicenters, active volcanoes, and the Tonga Trench are shown. Lines of latitude and longitude have been included.

The cross section shows earthquakes that occurred beneath line XY on the map. Depth beneath Earth's surface is indicated by the scale along the left side of the cross section, as are the range of depths for shallow, intermediate, and deep earthquakes. Distance from the trench is indicated by the scale along the bottom of the cross section.



Questions 5-10 use this diagram

The map below shows the depths of selected earthquakes along the crustal plate boundary near the west coast of South America. Letters *A*, *B*, *C*, and *D* are epicenter locations along a west-to-east line at the surface. The relative depth of each earthquake is indicated.



- 1. What 2 tectonic plates are converging at the Tonga Trench?
- 2. What are the 2 types of plates converging at the Tonga Trench? (oceanic/oceanic, oceanic/continental, continental/continental)
- 3. When 2 oceanic plates converge, which plate is subducted and why?
- 4. Which tectonic plate is being subducted at the Tonga Trench?
- 5. According to the cross section on Diagram 1 and your plotted data, where did the greatest number of earthquakes occur?
 - a. at sea level
 - b. between sea level and a depth of 100 km.
 - c. at a depth between 100 and 300 km.
 - d. at a depth between 300 and 600 km.
- 6. What 2 tectonic plates are converging at the Peru-Chile Trench?
- 7. What are the 2 types of plates converging at the Peru-Chile Trench? (oceanic/oceanic, oceanic/continental, continental/continental)
- 8. Using the cross-section of South America (Diagram 2) and the data from the Peru-Chile Trench, describe the pattern of earthquake depths from west to east.
- 9. Based on your answer to Question 8, what appears to happen as the oceanic plate to the west collides with the continental plate to the east.
- 10. Using Diagram 2, which graph best shows the depth of earthquakes beneath epicenters A, B, C, D?

	•	he depth of the majo and the Chile Trench			
	• • • • • •	lates create the deepental, continental/co			
Plate Boundary Ch	nart – using youi	r ESRT determine the	e type of boundary		
Location	Divergent	Convergent	Transform		
Mid-Atlantic	J = 112				
Ridge					
Aleutian Trench					
East Pacific					
Ridge					
San Andreas					
Fault					
Iceland Hot Spot					
Tonga Trench					
Southeast Indian Ridge					
13. What type of plate boundary creates new crust? Hint: Look at diagram Coceanic Ridge at a Divergent Plate Boundary Lithosphere					
14. Using page 5 divergent boundar	•	e table, where do we	e usually find		
15. Oceanic trend	hes are associa	ited with what type o	of plate boundary?		
16. Are converge	nt plate bounda	ries creating or dest	roying crust?		

17. What surface feature has most likely formed on the west coast of South America as a result of the collision of the South American and Nazca Plate? Hint: Look at diagram

18. When 2 continental plates converge, what surface feature is most likely formed because both plates resist subduction? Hint: Look at			
diagram. Where is this happening today?	Mountain torus	Parison -	
	Continental crust	Continental crust	
	Lithosphere	Lithosphere	
	Asthenosphere	Ancient oceanic crust	
	Continental-contine	ental convergence	
19. What 2 plates are involved in the relative mo Andreas Fault?	ovement of the San	ı 	
20. What is the relative movement of the plates Fault?	along the San And	reas	
21. At Transform Plate Boundaries, do you thinlare shallow, intermediate, or deep and why?	k the earthquake d	epths	